
The GSSP for the base of the Eocene Series is located at
1.58 m above the base of Section DBH in the Dababiya
Quarry, on the east bank of the Nile River, about 35 km
south of Luxor, Egypt. It is the base of Bed 1 of the
Dababyia Quarry Beds of the El Mahmiya Member of
the Esna Formation, interpreted as having recorded the
basal inflection of the carbon isotope excursion (CIE), a
prominent (3 to 5%) geochemical signature which is
recorded in marine (deep and shallow) and terrestrial
settings around the world. The Paleocene/Eocene
boundary is thus truly a globally correlatable chronos-
tratigraphic level. It may be correlated also on the basis
of 1) the mass extinction of abyssal and bathyal benthic
foraminifera (Stensioina beccariiformis microfauna),
and reflected at shallower depths by a minor event; 2)
the transient occurrence of the excursion taxa among
the planktonic foraminifera (Acarinina africana, A.
sibaiyaensis, Morozovella allisonensis); 3) the transient
occurrence of the Rhomboaster spp. – Discoaster ara-
neus (RD) assemblage; 4) an acme of the dinoflagellate
Apectodinium complex. The GSSP-defined Pale-
ocene/Eocene boundary is approximately 0.8 my older
than the base of the standard Eocene Series as defined
by the Ypresian Stage in epicontinental northwestern
Europe.

Introduction

The establishment of the Working Group (WG) on the
Paleocene/Eocene boundary at the 28th International Geological
Congress (Washington, 1989) was serendipitously coincidental with
the report of significant, stratigraphically linked events in the biotic
and isotopic record of Magnetic Chron C24 in the lower Paleogene
record of the Southern Ocean, obtained during Ocean Drilling Pro-
gram [ODP] Leg 113 (Barker, Kennett, et al., 1988). The search for
a Global Standard Stratotype-section and Point (GSSP) for the Pale-

ocene/Eocene (P/E) boundary soon became intertwined with the
effort of a large and growing community of earth scientists to docu-
ment and explain the flurry of remarkable events that occurred dur-
ing the 2.55 m.y.-long Chron C24r. The selection of the GSSP for
the base of the Eocene Series in the Dababiya section (Egypt) repre-
sents the close collaboration between this community and the WG, a
collaboration that included several international meetings devoted to
early Paleogene scientific problems, as well as field conferences in
Europe, the Middle East, North and South America, and several spe-
cial publications (Laga. Ed., 1994; Knox et al., eds. 1996; Aubry and
Benjamini, Eds., 1996; Molina, et al., 1996a, b; Berggren et al.,
1997; Aubry et al., Eds., 1998; Mancini and Tew, 1995; Ouda, ed.,
1999; Schmitz et al., Eds., 2000; Fluegeman and Aubry, Eds., 1999;
Huber and Wing., eds., 2001; Thiry and Aubry, Eds., 2001; Wing et
al., Eds., 2003; Ouda and Aubry, eds., 2003). This close collabora-
tion has been furthered with the conferences on Climate and Biotas
of the Early Paleogene (CBEP) held every 3 to 4 years.

The documentation of the suite of biotic, climatic, oceano-
graphic, sedimentologic, tectonic, and even perhaps extraterrestrial
events that affected Earth for a short time within Chron C24r has
reached a stage where we are confident that the event-stratigraphy
upon which the GSSP is being proposed below is reliable. We stress,
however, that there are critical areas that remain unsettled, among
which is the precise numerical chronology in the vicinity of the
GSSP, an area of primary significance for temporal correlations
between stratigraphic sections. Future efforts will aim at resolving
this problem in relation to the GSSP.

The proposal for locating the GSSP for the base of the Eocene
was submitted to the International Subcommission on Paleogene
Stratigraphy (ISPS) following a meeting of the WG members in
Luxor, Egypt (16–18 February, 2002), organized at the initiative of
Professors K. Ouda and C. Dupuis (the leading proponents of the
Dababiya section as GSSP) and Professor M.-P. Aubry (Chairman of
the P/E WG). The Luxor meeting was devoted to reviewing the
Dababiya section and correlative sections in the Upper Nile Valley,
and to organizing the ballot that followed. In the ballot, the members
of the WG voted unanimously in favor of placing the GSSP for the
base of the Eocene Series in the DBH partial section, located in the
abandoned quarry of Dababiya, eastern side of the Upper Nile Val-
ley, about 35 km south of Luxor, Egypt. The proposal was accepted
by the ISPS (May 2003) and the ICS (August 2003) and ratified by
the IUGS (August 2004).

The main objective of this paper is to describe and document
the GSSP. However, it is essential to place it in a broad stratigraphic
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and geohistorical framework. Thus we first summarize the philo-
sophical approach followed by the WG as it examined dozens of sec-
tions to understand the intricacies of Paleocene-Eocene stratigraphy,
and then discuss the means of correlations available in the vicinity of
the boundary, i.e., in Chron C24r. The details of the litho- and bio-
stratigraphic and isotopic correlations in the GSSP area (from Gebel
Abu Had near Qena to Gebel Owaina, near Esna, i.e., along a 100 km
North-South axis parallel to the Nile Valley and centered on Luxor)
were partly published in Dupuis et al. (2003). They are comple-
mented in the forthcoming description of the Core (DBDco) taken in
the Dababiya Quarry to obtain unweathered material of the GSSP
interval and Paleocene section below.

Conceptual framework

The placement of the Paleocene/Eocene boundary has long been
clouded by inconsistent assumptions, which have been a constant
source of miscorrelation (Berggren and Aubry, 1996, 1998). At least
five different and unlinked criteria to identify the boundary were in
common use in different disciplinary areas, such that the correla-
tions, especially between marine and terrestrial P/E boundaries, were
consistently offset by as much as 1.5 m.y. (Figure 1; see Berggren
and Aubry, 1998, Lucas, 1998). In view of the evidence for a num-
ber of closely associated global events in Chron C24r that could
bring stability to the Paleocene/Eocene boundary, magnetobiostrati-
graphic studies integrated with stable isotope stratigraphy and, when
feasible, with sequence stratigraphy of sections from as many differ-
ent settings as possible (deep sea, shallow marine, terrestrial, low,
mid and high latitudes) around the world have now contributed to a
detailed relative chronology of the Chron C24r-events (Figure 1).
The framework for this chronology has been northwest Europe, the
type area of the Thanetian (Renevier, 1873), Sparnacian (Dollfus,
1880), and Ypresian (Dumont, 1849) stages, the key units in the
chronostratigraphy of the transitional interval as well as the Eocene
(Lyell, 1833) and Paleocene (Schimper, 1874) themselves (Aubry,
2000; Aubry et al., 2003). In addition, radioisotopic dating of the
"–17 Ash" interbedded with highly fossiliferous Mo Clay in the Fur
Formation of Mors (Denmark) calibrates the stratigraphic succession
of northwest Europe in the Paleocene-Eocene transition (see Figure
1). This stratigraphically well constrained ash, with an 40Ar/39Ar
date of 54.5 Ma (Swisher and Knox, 1991; Berggren et al., 1995)

was used as an indirect calibration point for the Global Polarity Time
Scale (GPTS; Cande and Kent, 1992, 1995) and ultimately in the
Integrated Magnetobiochronologic Scale (IMBS) (Berggren et al.,
1995). It has been recently redated to 55.12 ± 0.12 Ma (FCT= 28.02
Ma)(Storey et al., 2007). Current age estimates for the
Paleocene/Eocene boundary (base PETM) vary from 55.75 Ma
(Storey et al., 2007; FCT=28.02Ma), 55.8 Ma (Ogg and Smith,
2004) to 55.93 Ma (Westerhold et al., 2007), the latter two estimates
based on astrocyclicity. Reconciliation of the age differnces between
the astronomically based ages and isotopic ages may require an older
age for the FCT standard (Kuiper et al., 2004; 2005; Villeneuve,
2004).

Among the Chron C24r-events, seven that appeared to be suit-
able for characterizing and correlating a P/E GSSP were identified
by the WG in 1997, and were examined for strength and weakness
(Berggren et al., 1997; Aubry et al., 2002; Figure 1). Three widely
observed biostratigraphic criteria were identified as the best means
of correlating the GSSP in an open marine setting: (1) the First
Appearance Datum [FAD] of the calcareous nannofossil Tribrachia-
tus digitalis, (2) the Last Appearance Datum [LAD] of the plank-
tonic foraminifera Morozovella velascoensis; and (3) the LAD of the
benthic foraminifera Stensioeina beccariiformis. Two non-paleonto-
logical criteria, the Chron C25n/C24r magnetic reversal and the
prominent negative carbon isotopic excursion [CIE] at the center of
the Chron C24r cluster of events, were considered for trans-facial
global correlations. Ultimately, the CIE, a globally recognizable and
unambiguous feature, was judged to be the most suitable for charac-
terisation of a worldwide chronostratigraphic horizon (see Aubry,
2000; Aubry et al., 2002), even though it can only be observed
instrumentally. The CIE occurs both in marine and terrestrial strati-
graphies; its amplitude of 2.5 to 4‰ is a conspicuous and unmistak-
able signal; and its association with several other equally unique
events ensures its unequivocal identification.

This is the first time that an isotopic excursion has been selected
as the primary criterion of a GSSP, and may be the first example of a
truly global correlation criterion, one that is directly observable in
both marine and terrestrial stratigraphies. Unlike purely geophysical
criteria, however, and more in accord with the conventional employ-
ment of physical stratigraphic evidence, the CIE (particularly in
complete fine-grained settings, such as the proposed boundary stra-
totype section) is directly associated with distinct lithologic and
biotic changes.

Elements of correlation

The Carbon Isotope
Excursion (CIE)

The outstanding geochemical fea-
ture in the lower Paleogene stratigraphic
record is a negative 2.5 to 4‰ carbon
isotope excursion that occurs in the
lower to mid-Magnetozone C24r, super-
imposed on a long-term Magnetozone
C26r to C24n decrease of the mean !13C
of the ocean (Shackleton et al., 1984;
Shackleton, 1986; Miller et al., 1987;
Zachos et al., 1993, 2001). This excur-
sion reflects a major perturbation of the
global carbon cycle (e.g., Kennett and
Stott, 1991), the immediate cause of
which remains controversial (Dickens et
al., 1995, 1997; Katz et al., 2002; Kent
et al., 2001; Pagani et al., 2006; Svensen
et al., 2004; Higgins and Shrag, 2006),
but one which is reflected in major sedi-
mentological and biological changes.
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Figure 1 showing correlation events for choice of GSSP after Berggren and Aubry 1998.



The CIE is, however, unquestionably related to one of the most sud-
den and dramatic global warming events of the Phanerozoic Era,
originally referred to as the Late Paleocene Thermal Maximum
(LPTM; Zachos et al., 1993, 2001) and now termed the P/E bound-
ary Thermal Maximum (PETM). We discourage the use of the less
descriptive and less precise expression “Initial Eocene Thermal
Maximum (IETM)”.

The CIE is registered in the carbon isotopic composition of
such varied systems as marine (e.g., Kennett and Stott, 1991;
Bralower et al., 1995; Katz et al., 1999; Bains et al., 1999) and
lacustrine (Cojan et al., 2000) carbonates, carbonate soil nodules
(Koch et al., 1992; 1995; Sinha et al., 1996; Bowen et al., 2001),
mammalian tooth enamel (Koch et al., 1992), and in organic matter
both terrestrial (Stott et al., 1996; Sinha et al., 1996; Magioncalda et
al., 2001, 2004; Thiry et al., 2006) and marine (Stott, 1992; Dupuis
et al., 2003). Detailed sampling shows that the CIE has a complex
sequential structure with smaller excursions separated by transient
plateaus that offer intersite correlation (e.g., Bains et al., 1999). It
also shows that the onset (base) of the excursion is registered at
slightly different stratigraphic levels by different foraminiferal
species, by whole rock (e.g., Kennett and Stott, 1991; Charisi and
Schmitz, 1995; Cramer et al., 1999) and by carbonates and organic
matter in the same section (Magioncalda et al., 2004). Recent stud-
ies additonally show that the CIE itself was preceded by extremely
rapid 1 to 3‰ transient isotopic excursions (Aubry et al., 2006).
Based on cyclostratigraphy, the CIE is estimated to have spanned
150 ± 20 kyr (Norris and Röhl, 1999; Röhl et al., 2000) with a cur-
rent age estimate 55.6 Ma to 55.9 Ma for its initiation (Westerhold
et al., 2007).

The CIE has been identified at numerous deep sea sites (e.g.,
Stott et al., 1990, Bralower et al., 1995, Thomas and Shackleton,
1996; Stott et al., 1996; Katz et al., 1999), in bathyal deposits
exposed in land sections (e.g., Contessa sections, Italy: Corfield et
al., 1991; Zumaya section, western Pyrénées, Spain: Schmitz et al.,
1997; Anthering Formation, Austria: Egger et al., 2000; Egger and
Wagreich, 2001; Alamedilla section, Betic Cordillera, Spain: Lu et
al., 1996), in shallow water marine sections (e.g., Owaina and Duwi
sections, Egypt, Schmitz et al., 1996; Qreiya section, Egypt, Knox et
al., 2003; Tawanui section, New Zealand: Kaiho et al., 1996; Bass
River section, New Jersey Atlantic margin: Thomas et al., 1997;
Cramer et al., 1999, Gibbs et al., 2006), in lacustrine sediments (e.g.,
Aix-en-Provence Basin, southern France: Cojan et al., 2000), and in
terrestrial deposits in North America and Europe (Wasatchian pale-
osols, Wyoming, USA: Bowen et al., 2001, Magioncalda et al.,
2004; northwest Europe: Thiry et al., 1998. 2006; Magioncalda et
al., 2001).

In marine settings, the CIE occurs in (calcareous nannofossil)
Zone NP9 and (planktonic foraminifera) Zone P5 (now correlated
with the recently defined Zone E1; Berggren and Pearson, 2005).
Regionally, it occurs in the (dinoflagellate) Zone P6b (Bujak and
Brinkhuis, 1998) in shallow deposits of the North Sea area, and in
the NZE1 Zone in New Zealand (Crouch et al., 2001). In the lacus-
trine/brackish succession of northern Europe, the CIE occurs within
the (charophyte) Peckichara disermas Zone (Thiry et al., 1998,
2006; Magioncalda et al., 2001; Aubry et al., 2005).

Because of its occurrence in both the marine and terrestrial
records, the CIE constitutes a unique means for truly global correla-
tions, and its choice as a primary vehicle for inter-regional correla-
tion of a major chronostratigraphic boundary is well justified, partic-
ularly in view of the fact that it is associated with specific paleonto-
logic events that help to make its recognition unambiguous, even in
unconformity-ridden sections (Aubry, 1998; Aubry et al., 2000). In
northwest Europe, the CIE occurs at the base of the Sparnacian
deposits, at a level that is ~ 1 m.y. older than the base of the Ypresian
Stage (Thiry et al., 2006), the former standard for the base of the
Eocene.

Secondary elements of correlation in the marine
record

The CIE is associated with four significant paleontologic events
that probably reflect a sharp and complex change in oceanic environ-
ment, namely 1) a notable extinction event in benthic foraminifera, 2)
the transitory occurrence of a so-called "planktonic foraminiferal
excursion fauna", 3) a similarly transitory occurrence of calcareous
nannoplankton excursion taxa and 4) an acme in the dinoflagellate
Apectodinium complex of species. Additionally, marked turnovers in
ostracode and deep-water agglutinated fauna occur regionally.

The benthic foraminiferal extinction event (BFE)
The CIE has been found in association with a benthic foramin-

iferal extinction event (BFE) in many deep sea (bathyal and abyssal)
sections (see Thomas, 1998, 2003, for a review).

During the Paleocene deep water habitats were populated by
two (calcareous) benthic foraminiferal assemblages: a predomi-
nantly abyssal, Nuttallides-dominated group, and a bathyal assem-
blage of predominantly relict Cretaceous species dominated/charac-
terized by Stensioeina beccariiformis (Tjalsma and Lohmann, 1983;
Thomas, 1992). During the late Paleocene a gradual expansion of the
bathymetric range from abyssal to middle bathyal depths of the Nut-
tallides-dominated assemblage at the expense of the Stensioeina
beccariiformis-dominated assemblage resulted in the replacement of
the latter biofacies by the former and the abrupt extinction of over
50% of the Paleocene deep-water assemblages. This extinction
event-the BFE-was the most dramatic event in the evolution of deep
water benthic foraminifera since the mid-Cretaceous. Among deep
water taxa that became extinct are Stensioeina beccariiformis, Angu-
logavelinella avnimelechi, Coryphostoma midwayensis, Aragonia
velascoensis, A. ouzzanensis, Gavelinella hyphalus, G. rubiginosus
(=G. danica), G. velascoensis, Neoflabellina jarvis and N. semi-
reticulata, Neoeponides hillebrandti, Osangularia velascoensis, and
Pullenia coryelli. The benthic foraminiferal extinctions may have
been caused by a combination of factors, including elevated water
temperatures, greater corrosivity of sea water, lower dissolved oxy-
gen levels and a decrease in food supply (see Thomas, 2003, for a
review). Over the following ~200 kyrs, surviving species were grad-
ually joined by newly evolved taxa that repopulated the ocean. Pre-
CIE benthic foraminiferal fauna were remarkably uniform across a
wide depth range, whereas the post-extinction fauna were diverse
and showed depth-related distribution, most likely reflecting
increase depth-related variations in physical/chemical properties of
sea water (Tjalsma and Lohmann, 1983; Katz and Miller, 1991;
Thomas, 1998).

In neritic to upper bathyal environments (the so-called Midway
benthic foraminiferal fauna), the extinction of benthic foraminifera
is also evident but less pronounced. Angulogavelinella avnimelechi,
Tritaxia midwayensis, Anomalinoides praeacutus and Cibicidoides
succedens, i. al., were eliminated from this habitat (Speijer and Wag-
ner, 2002; Thomas et al., 1997; Cramer et al., 1999; Alegret et al.,
2005; Ernst et al., 2006)

The planktonic foraminiferal PETM assemblage, or
“planktonic foraminifera excursion taxa” (PFET)

In low latitude sections, the interval of the CIE is characterized
by a suite of short-ranging morphotypes of planktonic foraminifera
that reflect transient diversification among the genera Morozovella
and Acarinina during the PETM (Kelly et al., 1996; Kelly et al.,
1998). These excursion taxa (Acarinina africana, A. sibaiyaensis,
and Morozovella allisonensis) have been identified in association
with the CIE in sections from the Pacific Ocean, the Tethys, and the
Atlantic margin (Lu et al., 1996; Kelly et al., 1998; Cramer et al.,
1999; Norris and Röhl, 1999; Berggren and Ouda, 2003a, b; Ouda et
al, 2003; Berggren et al., 2003).
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The calcareous nannoplankton PETM assemblage, or
the Rhomboaster-Discoaster araneus (RD) assemblage

A distinctive calcareous nannoplankton assemblage occurs in
association with the CIE. It comprises several short-range taxa with
unusual structure/morphology, including Discoaster araneus, D.
anartios, Rhomboaster calcitrapa and R. spineus. These forms are
very abundant in neritic sediments, as well as being common in deep
sea settings. This assemblage is restricted stratigraphically to the
CIE and geographically to the Atlantic-Tethys-western Indian Ocean
and western Pacific Ocean (Aubry et al., 2000; Aubry, 2001; Kahn
and Aubry, 2004; Raffi and et al., 2005).

The FAD of the RD is correlative with the FAD of the plank-
tonic foraminiferal excursion taxa and with the base of the CIE
(Cramer et al., 1999) and both are restricted to the CIE, thus charac-
terizing it (Dupuis et al., 2003; Kahn and Aubry, 2004).

The Apectodinium Acme
A change in dinoflagellate diversity is seen in Chron C24r at

low and mid-latitudes, when diversified assemblages with few Apec-
todinium spp. became replaced by low-diversity assemblages heav-
ily dominated by Apectodinium spp. (Bujak and Brinkhuis, 1998). A
similar shift in dominance was also observed subsequently at high
latitudes. This shift represents a global acme of Apectodinium spp.
which coincides precisely with the CIE (Crouch et al., 2003).

Whereas the global Apectodinium acme appears to be a unique
event, regional Apectodinium acmes also occur at other levels (Bujak
and Brinkhuis, 1998), so that an Apectodinium acme isolated from
other data would not constitute a sufficient criterion for identifica-
tion of the base of the Eocene Series. A useful, although regionally
restricted, criterion here is the consistent occurrence of A. augustum,
which is restricted to the CIE interval.

Secondary elements of correlation in the terrestrial
record

The CIE has been identified in North American terrestrial sec-
tions (Koch et al., 1992, 1995; Bowen et al., 2001; Magioncalda et
al., 2004) where it is associated with the P/E Mammal Dispersal
Event (MDE; see Berggren et al., 1997). The MDE, which defines
Zone Wa0 at the base of the Wasatchian Land Mammal Age of the
Big Horn Basin, consists of the sudden appearance and apparently
rapid spread of the earliest species in new orders of mammals includ-
ing perissodactyls, artiodactyls and euprimates (Rose, 1981; Gin-
gerich, 2001).

A detailed analysis of the stratigraphic range of mammals in the
upper Clarkforkian-lower Wasatchian deposits in 80 m of the thick
(2300 m) South Polecat Bench section in Wyoming has identified
four intervals with characteristic mammal associations (Gingerich,
2001). Clarkforkian Zone Cf3 is characterized by Probathyopsis
praecursor, Apheliscus nitidus, Aletodon gunnelli and Haplomylus
simpsoni. The thin Interval "Wa0?" is marked by the common occur-
rence of Meniscotherium priscum (a condylarth) but no other mam-
mals, and a notable abundance of the indestructible endocarps of
Celtis (the elm-related hackberry), suggesting reduced diversity after
an ecological collapse, in beds with a distinctive brown color. The
CIE is initiated in strata just below the base of this interval, at which
the Clarkforkian/Wasatchian boundary is defined. The thin "Wa0?"
Interval is succeeded by beds with abundant Copecion davisi, Hyra-
cotherium sandrae, Arfia junnei, Cantius torresi and Diacodexis ili-
cis, characterizing Zone Wa0, while Haplomylus speirianus, Cantius
ralstoni and Diacodexis metsiacus characterize Zone Wa1.

The CIE straddles the Clarkforkian/Wasatchian boundary
(Bowen et al., 2001), with its inception at level 1500 m in the Pole-
cat Bench section, 11 m below the base of Zone Wa0 and 6.5 m
below the base of Interval "Wa0?" Its end is apparently slightly
above the top of Zone Wa0 in an unfossiliferous interval. On this
basis the P/E boundary occurs in the very uppermost part of the
Clarkforkian North American Land Mammal Age.

The CIE is associated in the Big Horn Basin with floras com-
prising a mixture of native and migrant lineages and with large and
rapid (~10.000 years) plant range shifts (Wing et al., 2005). The flo-
ras are indicative of 5°C warming and of low precipitation at the
beginning of the event. Subtropical flora were affected by a major
extinction (Harrington and Jaramillo, 2007).

In Europe, where the terrestrial record is discontinuous, the CIE
has been identified in the lower part of the Sparnacian Argiles Plas-
tiques bariolées (Paris Basin), and well below the Conglomérat de
Meudon (thus not correlative with Zone Wa0; cf. Gingerich, 1989),
and in the lower part of the Reading Formation (London Basin)
(Stott et al, 1996, Sinha et al., 1996; Sinha, 1997; Magioncalda et al.,
2001; Thiry et al., 2006). Also in the London Basin, the CIE is asso-
ciated with charcoals indicative of episodic fires and runoff
(Collinson et al., 2007). The CIE has also been identified in Asia
(Bowen et al., 2001). 

Magnetostratigraphy
Magnetostratigraphy is a primary means of correlation in Ceno-

zoic stratigraphic intervals. However, it is not useful for correlation
at the precise level of the proposed Paleocene/Eocene boundary,
identified by the CIE and associated events. The duration of Chron
C24r is currently estimated at 2.556 m.y. (Cande and Kent, 1995)
while the CIE occupies about 0.0150 m.y. somewhere within the
early part of the chron (see above). The cryptochrons described by
Cande and Kent (1992) have not proven useful for correlation (Flynn
and Tauxe, 1998).

Other elements of correlation
Recognition of the CIE, like other stratigraphically restricted

features (i.e., BFE) is greatly complicated when unconformities are
present (Aubry, 1998; Aubry et al., 2000). A reliable identification
should include an isotopic decrease of 3 to 4‰, and association with
at least one of the secondary elements of correlation described
above. In turn, these latter permit us to predict the position of the CIE
in the section, and are thus important elements for correlation of the
base of the Eocene Series.

The CIE and its associated biotic events are bracketed by a
number of FAD and LAD of taxa, which help determine essentially
globally the completeness of sections around the P/E. These are, in
stratigraphic order:

nannoplankton: below the CIE, the LAD of Fasciculithus
alanii, and a simultaneous decrease in the abundance of Fasci-
culithus spp. Above the CIE, the FAD of Discoaster mahmoudii and
the LAD of Fasciculithus spp.

planktonic foraminifera: (below) the LADs of Igorina albeari
and I. tadjikistanensis; the FADs of Igorina broedermanni, Acarin-
ina wilcoxensis; and (above) the FAD of the planispiral taxon
Pseudohastigerina wilcoxensis (Ouda and Berggren, 2003) and the
LAD of Morozovella velascoensis.

Regional correlation in the marine record
A number of biostratigraphic events and turnovers have been

described that correlate regionally the P/E boundary. In addition,
regional lithologic changes may help delineate the boundary.

Biostratigraphic events and turnovers
Ostracodes: In the southern high latitudes, the CIE is associated

with the replacement of an assemblage of large, heavily calcified,
mostly epifaunal taxa (Krithe/OTG6) by an assemblage of small,
thin-walled, generalist taxa (Cytheropteron s.l., Propontocypris and
OTG2 and 3) (Steineck and Thomas, 1996). A marked turnover has
also been described from middle neritic setting in Egypt (Speijer and
Morsi, 2002).

Deep water agglutinated foraminifera: In the Tethyan realm,
deep water agglutinated foraminifera underwent a marked turnover
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slightly before the onset of the CIE. The sequential FADs of Karre-
culina coniformis, K. horrida, and Reophax elongatus, LAD of
Cribrostomoides trinitatensis coincident with the FAD of C.
trinidadensis all fall within the CIE, and the bloom of Repmanina
charoides immediately above it may provide fine regional correla-
tions (Galeotti et al., 2000).

Siliceous microfossils: The stratigraphic range of diatoms and
radiolarians in Chron C24r-sediments is poorly established due to
the rarity of upper Paleocene-lower Eocene siliceous microfossil-
bearing sediments (e.g., Fourtanier, 1991; Sanfilippo and Nigrini,
1998, Sanfilippo and Hull, 1999; however, see Radionova et al.,
2001).

A potentially stratigraphically useful event is an acme of large
diatoms of the genera Trinacria and Craspedodiscus found in asso-
ciation with the CIE and the Apectodinium spp. acme in a Tethyan
section (Egger et al., 2000).

As established through indirect correlations (Sanfillipo in
Aubry, 1999), the CIE occurs in the lower part of the (radiolarian)
Bekoma bidartensis Zone, and is bracketed between the LOs of
Podocyrtis papalis, Phormocyrtis turgida and Giraffospyris lata
below and the LOs of Theocotylissa auctor and Calocycloma castum
above.

Dinoflagellates: An acme of Deflandrea oebisfeldensis occurs
above the CIE in the North Sea region.

Lithologic/mineralogic changes
In the Southern Ocean, New Jersey margin, North Sea area,

southern Tethys, and New Zealand, the CIE is associated with a sig-
nificant increase in the kaolinitic component of clay mineral assem-
blages (Robert and Kennett, 1992; Gibson et al., 1993; Gibson and
Bybell, 1994; Kaiho et al., 1996; Knox, 1998; Cramer et al., 1999;
Dupuis et al., 2003; Ernst et al., 2006).

In numerous sections, much of the CIE interval is marked by a
calcite-free, leached clay or claystone (e.g., Orue-Etxebarria et al.,
1996; Bolle et al., 1999; Baceta et al., 2000). While the absence of
microfossils in such leached clays hampers precise biostratigraphic
correlation, the clay itself usually shows a distinctive color (red) and
constitutes an excellent field guide.

In other regions, such as the southern margin of the Tethys and
specifically including the outer-shelf deposits of northeastern Egypt
and the Sinai, the lower part of the CIE interval is associated with
regional dysoxia, represented by a phosphatic coprolite-rich laminite
with abundant fish teeth (Benjamini, 1992; Speijer, 1994; 1995;
Dupuis et al., 2003).

Motivation for selection of the boundary
level

Deep sea and onshore cores are the best records of physical, chemi-
cal and paleontologic events occurring over long periods of time.
Such cores have provided the data upon which a composite reference
stratigraphic section for Chron C24r has been constructed (Aubry et
al., 1996). In turn, this reference section has guided our choice
among land sections of marine (from neritic to bathyal) deposits of
the most suitable section to serve as GSSP for the P/E boundary.

Twenty three land sections were investigated, and from among
these nine merited closer examination as possible candidates for the
P/E boundary GSSP (Benjamini, 1992; Molina, 1994; Molina et al.,
1994, 1999; Molina and Arenillas, 1998; Orue-Etxebarria et al.,
1996, 2001; Aubry et al., 1999; Ouda and Aubry, eds., 2003). Ulti-
mately, two sections—Zumaya in northern Spain and Dababiya in
the Upper Nile Valley of Egypt—gathered the most support. 

The Dababiya section (Figures 2–7) has been selected for the
quality of its biostratigraphic and geochemical (isotopic) record
(Figures 8, 9 ). The carbon isotopic composition of organic matter
clearly shows the CIE, whose onset is coincident with the base of the

Dababiya Quarry Member (= base of Dababiya Quarry Bed 1) at
1.58 m above the base of the section. The BFE, PFET and RD are all
well represented in association with the CIE.

In choosing the DBH section at Dababiya for the P/E GSSP, we
emphasize specific benefits:
a The GSSP is located at a sharp corner in an artificial face in the

Esna Shale, 5 to 10 m high, that exposes the stratigraphy of the
GSSP laterally for approx. 200 m without a break (Figures. 3, 4,
7a). The section at the GSSP is in an uninterrupted, finely-lami-
nated Paleocene-lower Eocene interval (Figures 3–6), spanning
Chron C26n to C23r, and possibly younger (Aubry et al., 1999;
Dupuis et al., 2003). Located as it is in a vertical, but readily
accessible face, the DBH section is already well studied and char-
acterized.

b The GSSP level and its stratigraphic context can be followed
through variously-oriented vertical faces in excavations across a
large area (approx. 0.5 x 0.5 km) in Dababiya Quarry (Figures
2–4), offering a three-dimensional view of stratal relationhips.

c The GSSP level can be followed throughout northeastern Egypt
(e.g., Owaina, Qreiya sections) to outcrops in the western Desert
(Kharga oasis and New Valley; Ouda et al., unpubished manu-
script), to South of Aswan in Gebel Abu Ghurra (Ouda et al.,
2003), to the Red Sea (Duwi) (Schmitz et al., 1996; Aubry et al.,
1999) and beyond across the Sinai (Speijer, 1995; Speijer et al.,
1997) and the Negev (see above).

d The regional monocline of Upper Cretaceous-Upper Eocene
outer shelf strata, exposed across the NE Egyptian desert in
mesas and ridges, offer unparalleled opportunities to study the
boundary regionally in uncomplicated, highly fossiliferous, con-
tinuously exposed sections. 

e The proposed section is suitable for coincident establishment of
the presently undefined boundary of a basal Eocene global stan-
dard stage.

f The GSSP section and its local context, because of its complete-
ness, fine layering, uncomplicated exposure and relatively
expanded thickness, offers the potential for cyclostratigraphic
analysis of quarry faces and cores in the immediate vicinity, fol-
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Figure 2 Location maps redrawn from the 1/50000 topographic
maps Al-Uqsur (Luxor) NG 36 F6a and Isna NG 36 F3c. a, b:
location of quarries near Dababiya, east bank of the Nile River; c:
detailed map of outcrops and quarries, including antique
quarries, and location of partial sections DBA, DBD, DBE and
DBH (P-E GSSP). DBA0= reference level for measuring the
whole section; this is a flint bed. Subsection DBA is measured as
DBA- beow DBA0 and DBA+ above DBA0.



lowing standard methodologies (e.g., Shackleton et al., 1999;
Cramer, 2001). In the quarry and on the hillside behind it, a con-
tinuously exposed, unvegetated section ~ 160 m thick, with abun-
dant well-preserved microfossils, extends from the Tarawan
Chalk and Esna Shale to mesa-forming upper Ypresian Thebes
Limestone (Figures 2–6). Analyses are in progress to charac-
terise the GSSP in terms of astronomical cycles, like the Mio-
cene/Pliocene Boundary GSSP (Van Couvering et al., 2000),
giving a precise age and correlation of the GSSP.

Lithostratigraphy

Because of concurrent formal and informal lithostratigraphic
frameworks for the upper Paleocene-lower Eocene of Upper Egypt,
we formalise here a lithostratigraphic framework in which the GSSP
for the base of the Eocene is precisely positioned (Table 1). We
divide the Esna Shale Formation into 4 members, retaining 2 previ-
ously introduced names and introducing two new ones.

Esna Shale Formation
This formation was defined by Said (1960), as extending

from the top of the Tarawan Chalk to the base of the massive
limestones of the Thebes Formation. We follow this definition.
On this basis, the Esna Shale Formation comprises, from base to
top, the El-Hanadi, Dababiya Quarry, El-Mahmiya, and Abu Had
members.
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Figure 3 Oblique east-facing view of the outcrops in the Dababiya
Quarry (see Figure 2b) as seen from the hill immediately to the north
of the village of Dababiya. Sketch outlining the exposures of the main
lithostratigraphic units: Dakhla Shales, Tarawan Chalk, Esna Shale
and its four members [Hanadi, Dababiya Quarry, El Maayil and Abu
Had] and Thebes Limestone. The four partial sections DBA, DBD,
DBE and DBH (P/E GSSP) are shown. 

Figure 4  Oblique east-facing view of the outcrops sketched in Figure
3. Lithostratigraphic boundaries delineated as in Figure 3.

Figure 5 Upper part of the Esna Formation (El-Mahmayia and Habu
Had members) and contact with the Thebes Limestone. a: photograph;
b: diagrammatic sketch. DBDco: location of DBD core: DBH03.

Figure 6 Composite lithostratigraphic section at Dababiya, from
the Dakhla/Tarawan to the Esna Shale/Thebes Limestone
formational contacts. Key beds for local lithologic correlations
are shown. 1: Limestones; 2: marls and shales; 3: shales; 4: flint
concretions; 5: Phosphates; 6, variegated shales. 



El Hanadi Member emended
Emendation: This member was introduced by Abdel Razik

(1972), as extending from the Tarawan/Esna formational contact to
the top of a phosphatic bed in the lower part of the Esna Shale. We
have identified this latter bed as the El-Quda Bed of the El-Mahmiya
Member (see below). We thus emend the definition of the El Hanadi
Member to restrict it to the Esna Formation below the El-Quda Bed in
the Hanadi section. We further restrict it to the Esna Formation below
the El Dababiya Quarry Member, implying that the El Hanadi Mem-
ber corresponds to Esna Unit 1 of Dupuis et al. (2003) (Table 1).

Lithology: The member consists essentially of light gray, mas-
sive, compact calcareous shales with conchoidal fracture.

Boundaries: The lower boundary (with the Tarawan Chalk) is
well exposed at El-Hanadi, in the Dababiya Quarry (Figures 2–4),
and in the Qreiya section. The upper boundary is well exposed in the

(6 km to the North) Dababiya exposures (Subsections DBA and
DBH, Figures 2–4, 6, 7a, b; ~ 10 km north of El-Hanadi).

Thickness: The El Hanadi Member (= Unit Esna 1) is 7 m and
~ 5 m thick in the Dababiya and Quda sections, 7 m in the Qreiya
section to the North, 12 m and 14 in the Awaina and Kilabiya sec-
tions to the south (Ouda and Aubry, eds., 2003). 

Regional correlations: To the West (Kharga Oasis) the El
Hanadi Member is correlative with white chalky lithologies reminis-
cent of the Tarawan Chalk. To the south (Abu Gurrha section) it is
correlative with the upper part of the Garra Formation (Hermina,
1990).

Biostratigraphic characterization and age: The member belongs
to (planktonic foraminiferal) Zone P4b-c and P5a (Ouda and Aubry,
2003; now P5 sensu Berggren and Pearson, 2005), and (calcareous
nannoplankton) Subzone NP9a. The Tarawan Chalk/Esna Shales
contact corresponds essentially to the NP8/NP9 zonal boundary
(Figure 9).
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Figure 7 Dababyia Quarry Member (Subsection DBH; see Figure 3). a. general view. b. Detail of the 5 beds (DBQ Beds 1 to 5).

Table 1 The historical division and lithostratigraphic correlation of the Esna Formation.



Genetic interpretation: This unit was deposited in an outer ner-
itic to upper bathyal, well oxygenated environment (Ernst et al.,
2006).

El Dababiya Quarry Member
Name: From the Village of El Dababiya, 35 Km south of Luxor
Type section: El Dababiya Quarry, Subsection DBH.
Lithology: Lithologic ensemble of gray clay and laminite, typi-

cally consisting of the succession of 5 characteristic beds (Figure 7),
from base to top: 

Bed 1 (0.63 m thick): dark gray, non-calcareous, laminated
shale with occasional cylindrical phosphatic coprolites;

Bed 2 (0.50 m thick): phosphatic brown laminated shale with
numerous cylindrical coprolites;

Bed 3 (0.84 m thick): cream-colored, laminated phos-
phatic shale with sparse cylindrical coprolites and abun-
dant, lens-shaped, pale pink phosphatic inclusions, 1 cm to
several centimeters in diameter (?flattened coprolites); 

Bed 4 (0.71 m): grey calcareous shale; 
Bed 5 (1 m): marly calcarenitic limestone, forming a

prominent light gray bed.
Characteristically, the contacts between the beds are

regular, without any trace of bioturbation.
Boundaries: The lower boundary is a sharp contact

between light-gray bioturbated neritic shale (El Hanadi
Member) and a 63 cm dark shale. The upper boundary is a
transitional contact from a marly calcarenitic limestone to
a gray shale (El Mahmiya Member).

Thickness and distribution: The thickness of the
member varies regionally, from 3.68 m and 3.77 m in the
type (DBH) and Qreiya sections, respectively, to ~2 m and
~1 m in the El Quda, Gebel Aweina and El Kilabyia sec-
tions to the south of El Dababiya. It varies also consider-
ably locally, as in the El Dababiya Quarry, from a maxi-
mum of 3.68 m (Subsection DBH) to less than 1.45 m. It is
2.40 m in the El Dababiya Core. Individual beds also vary
in thickness, with Bed 1 and Beds 2–3 locally as thin as 5
cm and 2 cm, respectively.

Regional correlation: The El Dababiya Quarry Mem-
ber occurs throughout the Upper Nile Valley, and in the
Western (Kharga Oasis) and Eastern (Duwi Section)
deserts. To the South, at Wadi Abu Ghurra, the El
Dababiya Quarry Member correlates with the upper 3 m of
the Garra Formation (Ouda et al., 2003).

Biostratigraphic characterization and age: This mem-
ber belongs to the (planktonic foraminiferal) Subzone P5b
(Ouda and Aubry, eds., 2003; now redefined as Zone E1,
Berggren and Pearson, 2005) and (calcareous nannofossil)
lower Subzone NP9b (Dupuis et al., 2003) (Figure 9). 

Genetic interpretation: The El Dababiya Quarry
Member reflects the unfolding of the sedimentary, biotic
and geochemical events associated on the southern Tethys
platform with global warming at the Paleocene/Eocene
boundary. Bed 1 through 3 were deposited under euxinic
conditions leading to mass mortality; Bed 4 and 5 reflect
the progressive return to oxygenated conditions. 

El-Mahmiya Member
Name: From the name of Natural Park n°26 erected

for protection of the GSSP of the base of the Eocene
Series.

Type section: El Dababiya Quarry (Subsections DBH
and DBD)

Lithology: Monotonous, dark, clayey shales without
marked bedding, and low (<50%) calcium carbonate con-
tent and with clear cyclic color variations. 

Boundaries: The lower boundary is the top of the cal-
carenitic limestone of El Dababiya Quarry Bed 5. The
upper boundary is the base of a prominent (lowest) lime-
stone bed at 69.5 m in section DBD (Figure 5). 

Thickness and distribution: The member is 65 m thick in the El
Dababiya Quarry, 34 m in the Qreiya section, 31 m in the Gebel
Owaina section and 18 m in the El Kilabiya section.

Regional correlation: This member extends throughout much of
Egypt, from the Red Sea coast to the Western Desert. In southern
Egypt (Wadi Abu Ghurra section) it correlates with the Lower clas-
tic Member of the Dungul Formation Ouda and Berggren, 2003). 

Biostratigraphic characterization and age: This member
belongs to the (planktonic forminiferal) Subzone E2-3 [formerly
Subzone P5c (partim) to P6a (partim)] and (calcareous nannofossil)
Subzone NP9a (partim) through Zone NP10. The boundary between
the El-Mahmiya and Abu Had Members is almost equivalent to the
NP10/NP11 zonal boundary (Ouda and Berggren, 2003).

Genetic interpretation: Deposited in outer neritic to upper
bathyal (Dupuis et al., 2003).
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Figure 8  Biostratigraphy of the composite section (Figure 6) at Dababiya.
Biozonal boundaries and lowest and highest occurrences of selected planktonic
foraminifera and calcareous nannoplankton taxa are shown. 1– limestones with
DBA0 flint concretions, 2–marly limestone, 3–marls, 4–shales, 5–phosphatic
shale and coprolites, 6–bioturbated surface, 7–macrofossils, 8–pyrite nodules,
9–baryte nodules, 10–phosphate beds. The following horizons were used to
correlate the subsections: 1) the base of the Dababiya Quarry Member (a);
marker b in the calcarenite (~60% carbonate); 2) three pink layers in the lower
part of Unit Esna 2, just above the DQB (pk1, pk2, pk3). 



El-Quda Bed
Name: From the village of El-Quda
Type section: El-Quda section, 25° 28,4'N, 032° 32.79'E
Lithology: This is, predominantly, a thin (10–30 m) calcarenite,

generally with accumulations of cyclindrical coprolites, phosphatic
and shale clasts and a variable amount of glauconite at the base.
Coprolites are scattered in the upper part. Locally passes into a glau-
conitic clayey calcarenite, with few coprolites.

Boundaries: The lower boundary is an irregular, bioturbated
erosional contact with the El Hanadi Member (Dababiya Quarry;
Hanadi), or the El Dababiya Quarry Member (El Quda section, El
Dababiya Quarry). 

Thickness and distribution: The El-Quda Member is readily
characterized when it occurs at the bottom of deep-cutting channels
(contact with the El Hanadi or El Dababiya Quarry Member) . It is
difficult to identify laterally between channels, and may only be a
bioturbated surface difficult to characterize in the drab lithologies of
the El-Mahmiya Member.

Genetic Interpretation: The El-Quda Bed differs from beds of
the El Dababiya Quarry Member by 1) the presence of glauconite,
and 2) the erosive and bioturbated contact with the underlying lithol-
ogy. The El Dababiya Quarry Member is non-glauconitic, and the
contacts between its beds are always smooth, without bioturbation or
reworking. The El Quda Bed contains reworked coprolites from El
Dababya Quarry Beds 2 and 3 and clasts reworked from them or the
El Hanadi Member. It implies deposition in a well oxygenated, high
energy environment.

Abu Had Member
The Abu Had Member was introduced

by Abdel Razik (1972) as part of the Thebes
Limestone Formation for the alternating
shales and limestone at the transition
between the monotonous shales of the Esna
and the massive limestones of the Thebes.We
assign the Abu Had Member here to the Esna
Shales Formation because of the clear-cut
contact between the massive limestones and
the shale facies (as behind the temple of
Queen Hatshepsut at Thebes/Gurna). At El
Dababiya, the member is 43.5 m, and belongs
to Zone E4 (partim) – Zones E5-E6 (of
Berggren and Pearson, 2005) formerly Zones
P6b (partim) through P8 (Berggren et al.,
1995) and Zones NP11-12 undifferentiated
(Berggren and Ouda, 2003a). In the Qreyia
section (Gebel Abu Had) the member, 5 m
thick, is unconformable with both the El
Mahmiya Member and Thebes Formation,
and belongs to the lower part of Zone E5 (=
lower part of Zone E7) (Berggren and Ouda,
2003b). The member is absent in the Gebel
Owaina and El Kilabiya sections (Ouda et al.,
2003)

The Eocene Global
Standard Stratotype-
Section and Point

Name of the boundary: Base of the
Eocene.

Rank and status of the boundary:
Series/Epoch GSSP.

Position of the defined unit: Base of
the middle series of the Paleogene System,

between the Paleocene Series and the Oligocene Series.
Type locality of the GSSP: A face (section DBH) exhibiting

the lower part of the Esna Shales in the inactive Dababyia Quarry.
Section DBH (9 m thick) is part of a 120 m-thick composite vertical
section (DBcomp) through the Esna Shales.

Geological setting: The suite of gebels that overlook the upper
Nile Valley, from south of Esna up to Assyut (Figure 10), display
continuous exposures of Paleocene to lower Eocene epicontinental
(neritic to upper bathyal) sediments (Said, 1990) divided into forma-
tions (in stratigraphic order) of the Dakhla Shales (Said, 1960),
Tarawan Chalk (Awad and Ghobrial, 1965), Esna Shale (Said, 1960)
and Thebes Limestone (Said, 1960). The Dababiya quarry (Figures
2–4) offers a remarkable three-dimensional cross section through the
Esna Shale Formation. Minor local tectonics has tilted the Tarawan
Chalk (which was exploited for building stone in Pharaonic times) in
the western part of the quarry so that its contact with the Esna Shale
is visible (Figures 3, 4). As elsewhere in the area, the Esna
Shales/Thebes Limestone formational contact is easily accessible in
the Dababyia Quarry

Geographic location: The Dababiya section is located on the
right (east) bank of the upper Nile Valley, 23 km south of Luxor and
~30 km North of Esna, Type locality of the Esna Shales (Figure 10).

Coordinates: Lat. 25° 30' N., Long. 32° 31' 52" E
Map: The stratotype section is represented on the Geological

Map of Egypt (Klitzsch et al., 1981) and precisely located on the
geological map established for the Qena-Luxor-Esna area by Khalifa
(1970).
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Figure 9 Litho-bio- and isotope stratigraphy of the upper El Hanadi, Dababiya Quarry and
lower El-Mahmiya Members (Subsection DBH). The GSSP of the base of the Eocene is
located at the base of the Dababiya Quarry Member (= base of Dababiya Quarry Bed 1) at
1.57 m above the base of section DBH.



Accessibility: Access to the inactive quarry is unrestricted, at
all times. The quarry is easily reached from the village of Dababiya,
on the Luxor-Aswan road, by an unpaved ~1 km track that traverses
the valley extending inland from the village. The GSSP horizon can
easily be followed throughout the quarry (e.g., Sections DBA, DBE;
Figures 3, 4, 5, 6) on foot or by car. 

Conservation: The Dababiya site (Figures 2–4), including the
deeply-cut ancient quarries in the Tarawan Chalk, and the interna-
tional boundary point for the base of the Eocene in the adjoining
Dababiya clay quarry, has been designated by Eng. Maged George
of the Ministry of the State for Environmental Affairs and Qena
Governate as Natural Park No 26 and approved by Dr. Ahmed Nazif,
Prime Minister of Egypt. Access to the site is under the supervision
of the Geology Department of the University of Assiut who will pro-
vide formal permits. Please contact Prof. Khaled Ouda
(kh_ouda@yahoo.com) and/or Dr. Nageh Obaidalla (nageh46@hot-
mail.com).

GSSP definition: The base of the thin dark gray clayey horizon
(Dababiya Quarry Bed 1) that underlies the 2m-thick phosphatic

laminite (Dababiya Quarry Beds 2 to 5) in the Dababyia DBH par-
tial section constitutes the GSSP for the base of the Eocene Series
(Figure 7a, b). This level is firmly located in the lowest part of the
CIE, which spans a brief interval of ~ 0.015 m.y. Current research
(Gradstein et al., 2004; Luterbacher et al., 2004; Westerhold et al.,
2007, Storey et al. 2007) based on redating of the –17 Ash and/or
integrated radioisotopic age dating and astronomical calibration is
converging around an age of ~ 55.8–55.9 Ma for the P/E bound-
ary.

Identification in the field: The Esna Shales are unmistakably
identified as a thick, uninterrupted body of marine shales between
the Tarawan Chalk and the Thebes Limetones. Three pinkish limy
shale beds, 10 to 20 cm thick and easily seen from the distance, form
distinct markers in the lower part of the Esna Shale (Figures 4, 5).
They lie respectively 3.8, 6.0 and 7.4 m above the GSSP. A distinctly
laminated unit of black and yellow coprolite-rich phosphatic shale
(i.e., Dababiya Quarry Beds), that weathers as a single rough-sur-
faced grey stratum, lies immediately above the GSSP (Figure 7a, b).
The clay horizon (i.e., base of Dababiya Quarry Bed 1) at the GSSP
is marked by a metal tag in the section.

Completeness of the section: The contact between the biotur-
bated gray shales, below, and the dark clay layer at the GSSP is a
sharp but apparently continuous transition when seen close up, rep-
resenting an abrupt change in depositional regime.From a distance,
however, this horizon gives the appearance of being draped over a
subdued topography. Carbon isotopes in samples from the lower part
of the DBH section (Figure 9) can be interpreted to mean that the
excursion in isotopic values begins below the GSSP level, so that the
deflection or notch at the transition is not an indication of missing
section. On the other hand, the basal part of the curve and a part of
the underlying shales may be missing in a minor discontinuity,
despite visual evidence to the contrary. In either case, the GSSP falls
about 10%–20% up from the inception of the excursion, as it does in
the more expanded Polecat Bench section (Magioncalda et al. 2004).
There is no other suggestion of missing or condensed interval in the
DBH exposure. In particular, the benthic foraminiferal fauna indi-
cates a remarkably consistent water depth throughout the Dababiya
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Figure 10 Location of main P/E sections in Egypt.

Figure 11  Correlation of the GSSP of the base of the Eocene Series Base of Bed 1 of the Dababiya Quarry Bed, Dababyia) to the Deep Sea
(ODP site 690) and terrestrial (Pole Cat Bench, Wyoming) stratigraphies. (modified from Magioncalda et al., 2004).



section. This stability suggests a fairly similar environment of depo-
sition throughout the interval represented.

Global correlation: Multiple tools for global correlation of the
base of the Eocene have been identified following integrated studies
of numerous sections. They are summarized above. The GSSP is
reliably correlated globally as follows (Figures 7a, b, 9, 11; Ouda
and Aubry, Eds., 2003):

Chemostratigraphy: The CIE, with an amplitude of 3.5‰, is
well represented in the DBH section. Constant !13Corg values of ~
–24‰ occur between the base of the section up to the level of the
GSSP. A sharp decrease occurs across the GSSP horizon from ~
–24‰ in DBH 1.60 to ~ –26.5‰ in DBH 1.65 and above a short
plateau values decrease again from –25.82‰ in DBH 1.80 to ~
–27.5‰ in DBH 2.00. !13Corg values remain constant up to DBH
3.00 and then increase progressively until pre-excursion values are
reached at DBH 4.75 m. Above this level and up to the top of the sec-
tion values remain constant.

The shape of the carbon isotope record in section DBH derived
from organic matter mimics other high resolution carbon isotope
records derived from carbonates (e.g., Bains et al., 2001; Bowen et
al., 2001; Magioncalda et al., 2004). Carbon isotope records derived
from carbonates in the DBH section and in nearby sections, although
of similar amplitude, failed to register the characteristic pattern of
the CIE (Schmitz et al., 1996; Aubry et al., 1999; Dupuis et al.,
2003).

The base of the CIE is registered differently in different marine
carbonates (whole rock, tests of different species of planktonic for-
aminifera; see above). While the initial shift would appear to have
the greatest correlatability, the inflection point does not occur at
exactly the same stratigraphic level when different carbonates are
being compared. This implies a built-in, albeit small, uncertainty in
correlations that use the base of the CIE. In addition, there is also an
offest between the inflection points recorded by marine carbonates
and by organic matter (Magioncalda et al., 2004). For these reasons,
the WG has chosen to locate the GSSP at a distinctive lithologic
change (definition) that lies at or close to the isotopic shift rather
than specifically at the initial negative shift (correlation) in carbon
isotopic values.

Benthic foraminifera: Midway Assemblage species are domi-
nant throughout the section, although deeper water Velasco Assem-
blage species are consistently present. An outer(most) neritic
(150–250 m water depth) paleoenvironment is inferred based on the
presence of both typical outer neritic (Cibicidoides alleni, C. succe-
dens, Anomalinoides midwayensis, Alabamina midwayensis, Osan-
gularia plummerae, Bulimina midwayensis) and upper bathyal
(Angulogavelinella avnimelechi, Tritaxia midwayensis, Anomali-
noides rubiginosus) species.

The largest change observed in the benthic fauna occurs in the
interval of the PETM between samples DBH1.5 and DBH3.6. Sam-
ples below this interval are dominated by species of Cibicidoides,
Anomalinoides, and A. avnimelechi. Samples above this interval are
dominated by lenticulinids and buliminids with a gradual return of
Cibicidoides and Anomalinoides species over ~10 m. This transition
is correlative with the prominent benthic foraminiferal extinction
event observed in bathyal and abyssal sections (Tjalsma and
Lohmann, 1983; Thomas, 1990; Katz et al., 1999).

The level of the benthic foraminiferal extinction event (BFE) is
typically taken at the last occurrence of Stensoeina beccariiformis.
Although this species is absent in the Dababiya section, the last
occurrence of the similar species A. avnimelechi may be taken as
correlative with the deep-sea extinction event. The disappearance of
A. avnimelechi also defines the BB1/BB2 boundary in the bathyal
benthic foraminiferal zonation scheme of Berggren and Miller
(1989). In the DBH section, this level occurs just above a carbonate-
free interval. No benthic foraminifera were observed in samples
DBH1.6–DBH2.8; very few benthic foraminifera were observed in
sample DBH3.15. Angulogavelinella avnimelechi was observed in
samples DBH3.4, but not in sample DBH3.6 and above. Similarly,
rare occurrences of S. beccariiformis within the CIE interval have
been reported from other sections; where available, carbon isotope

data have confirmed that these specimens were reworked from
below the CIE (e.g., Katz et al., 1999; Cramer et al., 1999). It is
therefore likely that most of the benthic foraminifera in the samples
just above the barren interval at DBH were redeposited, in which
case the BFE would be placed within the barren interval. However,
with no supporting evidence for reworking, we place the extinction
event in the interval between DBH3.4–DBH3.6.

Planktonic foraminifera: Section DBH belongs to Zone P5.
Characteristic features of this section are as follows:
1 Planktonic foraminifera are absent or exceedingy rare in the

lower 3 m of the Esna Shale with the exception of samples DBH
0.0, 1.0 and 1.5. Faunas referable to Zone P5 occur in these three
samples and are characterized by Morozovella acuta, M. aequa,
M. apanthesma, M. subbotinae, M.velascoensis, Igorina lodoen-
sis, Acarinina soldadoensis, Subbotina patagonica and S. velas-
coensis.

2 The black, quartz-rich unit and quartz rich sands and silts of litho-
logic unit 2 are barren. 

3 The phosphate (apatite) rich layer (Unit 3) is essentially barren in
its lower part (samples DBH2.5, 2.6, 2.8, 3.15). However,
extremely rare Acarinina sibaiyaensis were found at level 2.3.

4 The CIE/PETM interval (as registered in the !13Corg) actually
corresponds to the interval from DBH1.60 to 5 (~3.4 m thick).
The interval from DBH3.4 to 5 contains a "foraminiferal mud"
(which, when observed in the form of washed residues under a
microscope has the appearance of a pelagic ooze because of its
high percentage of planktonic foraminifera). The significant clay
component, however, indicates that the term "foraminiferal mud"
may be a more appropriate descriptive term. Within this interval
the planktonic foraminiferal excursion taxa (PFET) have been
observed from DBH 3.4 to 4.25 (~1m thick): Acarinina
sibaiyaensis (common), Ac. africana (rare) and Morozovella
allisonensis (infrequent and atypical, consisting predominantly
of relatively high conical morphotypes intermediate between the
typical end members of velascoensis and allisonensis as illus-
trated by Kelly et al., 1998, text-figure 8). 

The PFET (and associated Subzone P5b/E1 faunal elements) is
seen to span the ascending (return) limb of the CIE (~26.5%–25%
!13Corg) and to span/represent ~30% of the total stratigraphic inter-
val of the CIE/PETM at this section. Several taxa have been
observed to have their lowest occurrences (LO) in the interval of the
PFET: Acarinina pseudotopilensis, Ac. wilcoxensis, Igorina broed-
ermanni and the distinctve planispiral taxon Pseudohastigerina
wilcoxensis (confirming its biostratigraphic utility in denoting the
Paleocene/Eocene boundary) together with its (relatively common)
immediately ancestral taxon Globanomalina luxorensis, which is
characterized by having a slightly asymmetrical test/aperture.

The remainder of section (DBH4.5 to 9) contains typical Sub-
zone P5c/E2 faunal components.

Calcareous nannofossils: Section DBH belongs to Zone NP9.
Six distinct assemblages occur as follows:
1 Calcareous nannofossils (CN) are abundant and preservation is

moderately good from DBH0.0 to DBH1.5. The assemblages, of
very high diversity, include Chiasmolithus consuetus, Crucipla-
colithus delus, Discoaster falcatus, D. multiradiatus, Ellip-
solithus distichus, E. macellus, Ericsonia subpertusa, Fasci-
culithus alanii, F. lilianae, F. schaubi, F. tonii, F. tympaniformis,
Heliolithus megastypus, Sphenolithus primus, Towieus callosus,
T. eminens, Zygrhablithus kerabyi. These are typical low latitude
late Paleocene assemblages.

2 Levels DBH1.6 and DBH2.00 are essentially barren.
3 CN are common at level DBH2.3 but diversity is very low and

preservation is poor. Ericsonia subpertusa is predominant at this
level. Discoaster multiradiatus (rare) co-occurs with a few spec-
imens of an unidentified discoaster, here referred to as D. sp. cf.
D. pacificus.

4 CN are common and moderately well preserved at level DBH
2.5. The low diversity assemblage includes E. subpertusa, Dis-
coaster anartios, D. sp. cf. D. pacificus, F. tympaniformis, Rhom-
boaster cuspis, Towieus pertusus.
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5 Between DBH2.6 and DBH4.25, the CN are abundant with good
preservation. Assemblages are characterized by the common to
abundant occurrences of Discoaster araneus, R. cuspis, R.
spineus, with E. subpertusa, D. helianthus, D. lenticularis, D.
multiradiatus, F. liliana, F. schaubi, F. tympaniformis, Z. ker-
abyi. In this interval, D. araneus and Rhomboaster spp. first dom-
inate the assemblages and subsequently dwindle progressively as
general diversity increases.

6 From level DBH4.5 and up to level DBH9.0, the CN assemblages
are well diversified, and similar to assemblages below DBH1.6,
except for the occasional occurrences of D. araneus, and Rhom-
boaster spp. Of interest are the absence of F. alanii (HO in
DBH1.5; a few, isolated occurrences are believed to reflect
reworking), the LO of D. mahmoudi at DBH5.4 and the LO of
Pontosphaera plana at DBH8.0.

The changes that occur in the CN assemblages between level
DBH 2.5 and 4.5 have been reported from other sections (Aubry,
1999; Aubry et al., 2000) and are characteristic of the CIE, as seen in
other sections. A sudden dominance of E. subpertusa occurs in asso-
ciation with the CIE at ODP Site 865 (Kelly et al., 1996). The Rhom-
boaster spp.–D. araneus-dominated assemblage between DBH2.6
and 4.5 represents the RD, restricted here as in the New Jersey mar-
gin Bass River section and the Alamedilla section (Spain) to the
duration of the CIE (Cramer et al., 1999; Kahn and Aubry, 2004).

Other means of correlation
The magnetic signal in surface exposure at Dababiya is largely

overprinted (Kent and Dupuis, 2003) and no dinoflagellate cysts are
preserved (Ali Soliman, personal communication, 2002). It was
hoped that outcrop remagnetization resulted from superficial weath-
ering in subtropical climate. However, the Dababiya Core is also
entirely remagnetized (D. V. Kent, pers. comm. November 2005),
implying that magnetic overprinting is a regional phenomenon in the
Nile Valley, likely resulting from fluid flow during the Late Neogene
tectonics in the valley (Kent and Dupuis, 2003).
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